RrRobes, WrinkIesi&' Magical Evils!

Sprint Two

Sprint One Recap:

During Sprint one, our main goal was to create a playable prototype of our
game that contained the core functionality together. Much of my time was spent
creating basic assets and scripting the players abilities which led to telekinesis
and necromancy working. At the end of the sprint, we had a functional game

Q with working basic mechanics. During our feedback sessions, we were told to 3
narrow our scope and focus on the core gameplay loops we had.

Feedback:

Initially, our response to the feedback was to have a meeting to discuss the
changes we could make to the project. On my part, | began looking into ways
the player could have their Ul displayed mechanically and whether certain
mechanics were needed at all. To this extent, we all decided it was best that the
mana resource system should be removed in order to extend the playtime and

fun our players experience.

v Telek is (Script o
B v Telekenesis (Script) - B v Telekenesis (Script) o

Script B Telekenesis

Script B Telekenesis 0
Soul Power Manager B Soul Power Manager (¢ @
Can Be Afforded Anim > PlayerHand (Anir @

Power Cost L First Time Picking v

In practice, this meant removing the cost for telekinesis and replacing Ul
elements with a simple vignette to simplify it.

Besides the player, the enemies also underwent an overhaul which led to their
animations all being switched out and their AI becoming more of a threat in
smaller numbers. Their eyes were also altered to give them a more magical
aesthetic and also act as a visual indicator as to whether they are “active” or not

Inclusion of Cufscenes:
As a method for diegetic storytelling, cutscenes were introduced as a way to
present enemies and objectives to the players. This meant I took time to create a
“timeline manager” which would manage what variables had to be true before a
cutscene would play.
Preview M4 |4 B Bl pM [p] 486 IffﬂEner‘nyInlrn— Timeline (Enemylntro - Timeling)

+ - I £

T IntroCamera

¥ 7 IntroCamera_Zoom = H Active

A »IntroCamera (Anima &

A »IntroCamera_Zoom | ®

+ 7 EnemyWakeup

private void OnTriggerEnter(Collider other)
{
: if (other.CompareTag(“Player™) && Cutscene && cutscenePlayed == false)

E ' canvas.enabled false;
Cutscene.Play();

cutscenePlayed = true;
Cutscene.stopped += OnCutsceneFinished;

Through cutscenes, the player is better
directed to where their attention should be
held, and it also serves as a way to present
lore. The most difficult part of this for me
was getting timings correct and making
sure everything ran correctly.

Inclusion of Motion Capfure Animafions:

As a way to enhance our gameplay and be much more efficient with the way we
animate. This involved me putting the suit on, performing some basic

movements, and then eventually retargeting the bones of the suit to the bones of
our characters.

In order to accomplish this, I used a free add-on from Rokoko which would help
match the bones up and get the animation working correctly.

 Retargeting

elect the armatures:

Rokoko

" mixamaorig:Reference

MMD

" KnightSkeleton

Rebuild Bone List

S

i

mixamorig:Head A Head
mixamorig:RightShoulder '\.

CATS

mixamorig:RightArm '\. Upper&rm.R
g:RightForefrm '\. LowerArm.R
arig:RightHand A wrist.R
orig:RightHandindex1 "\. IndexFingl pper.R
g:RightHandindex2 '\.. IndexFingMid.R

mixamorig:RightHandindex3 "\. IndexFingLow.R
rmixamorig:RightHandMiddlel "0.. MiddleFingUpper.R

rmixamorig:RightHandMiddle2 '\. MiddleFingMid.R
L3 [y

®
Sprint 2 Wrap up
Towards the end of the second sprint, my focus was on the feedback the player
got when they were throwing objects. To help with this, I created a script that
had objects change mesh to a more “Damaged” state and also have objects
“leak” parts of themselves which aided with showing health of objects.

Alongside this, I also took a look into how I could make enemy attacks fit more
into the theme. To do this, I researched how games such use trail lines as a
method of feedback for the player. Specifically, I used Super Smash Bro’s and
Hellboy Web of Wyrd as reference points

FIU|U]|S]| €

After this research, I adapted the style onto my enemy character attacks. This
both give the player feedback for when the enemy is attacking and also gave
them an idea of how far they need to back up when the enemy attacks.

much of it was done by toggling on and off the actual trail line during the
animation. This took a lot of time as each movement had to be correctly synced
to when the trail should appear and disappear.

& & &

When reaching the end of sprint 2, it was heavily debated whether we should
include a second enemy type or not to keep gameplay engaging. This was
brought up by play testers as they found that elements of the game were too
easy when facing a single ranged enemy type.

To test this out, I created the brain and framework for a ranged enemy which
used an incomplete skeleton model.

Bl ¥ MrBones Shooting (Script)
B lMrBonesShooting
Projectile Prefab # Bones

Fire Point A ProjectileLocation (Transfor @
Projectile Speed 10

Fire Rate 1

Statemachine B MrBones_Base (ME State M @
Fire Timer 1

Q Dubbed as “Mr Bones”, He shared a similar framework as the knight but with a
the inclusion of a few new states. One of these states was used to refer to this
“Shooting” script which handled all the values including what projectile he

would throw. public override void Tick(float deltaTime)

{
DetectTargets();
FindClosestTarget();
CheckiIfDead();
it (IsInShootingRange())
{
stateMachine.Agent. speed
it (lAttacking)

{
FacePlayer();

}
DecidetoAttack();

Il
=
[

¥

it (!IsInShootingRange())

{
stateMachine.Agent.speed = stateMachine.movementSpeed;
MoveToPlayer(deltaTime);
FaceTarget();

¥

& & &

CE5

bool FacingPlayer()

Vector3 directionToPlayer = (stateMachine.mainTarget.position - stateMachine.transform.position).normalized;
float angle = Vector3.Angle(stateMachine.transform.forward, directionToPlayer);

I
v
'
'

// You can adjust the angle threshold based on your requirements
if (angle < 25f)
{

// The enemy is looking directly at the player

return true;

return false;

